Epinephrine stimulates IL-6 expression in skeletal muscle and C2C12 myoblasts: role of c-Jun NH2-terminal kinase and histone deacetylase activity.

نویسندگان

  • Robert A Frost
  • Gerald J Nystrom
  • Charles H Lang
چکیده

Although an individual's genetic makeup is a major determinant of muscle mass, other influences, such as hormones, cytokines, nutrition, and exercise can also modulate muscle size. IL-6 is an important inflammatory cytokine. Mice that overexpress IL-6 fail to thrive and/or have reduced skeletal muscle mass. The purpose of the present study was to determine whether the stress hormone epinephrine increases inflammatory cytokine expression in skeletal muscle and muscle cells. Infusion of epinephrine in vivo for 2 h increased IL-6 protein (15-fold) and mRNA (40-fold) in skeletal muscle but not in liver. Epinephrine had a similar effect in C2C12 muscle cells, where the hormone increased IL-6 protein and mRNA in a dose- and time-dependent manner. Epinephrine-stimulated IL-6 expression was attenuated by the alpha-adrenergic receptor antagonist phentolamine and completely blocked by either the beta1/2-adrenergic receptor antagonist propranalol or the beta2-antagonist ICI-118551. The transcriptional inhibitor DRB and the synthetic glucocorticoid dexamethasone also blocked epinephrine-induced IL-6. SP-600125 (a JNK inhibitor) and SB-202190 (a p38 MAP kinase inhibitor) completely blocked epinephrine-induced IL-6 synthesis. Endotoxin and epinephrine given together had a synergistic affect on IL-6 mRNA and protein expression. Trichostatin A (a histone deacetylase inhibitor) blocked both endotoxin- and epinephrine-induced IL-6 expression. These data suggest that epinephrine induces IL-6 synthesis in skeletal muscle in vivo and myocytes in vitro. Epinephrine utilizes predominantly the beta1/2-adrenergic receptors to stimulate IL-6 synthesis. Endotoxin and epinephrine synergize to increase IL-6 mRNA expression. Optimal IL-6 synthesis may require both stress kinase and histone deacetylase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipopolysaccharide and proinflammatory cytokines stimulate interleukin-6 expression in C2C12 myoblasts: role of the Jun NH2-terminal kinase.

IL-6 is a major inflammatory cytokine that plays a central role in coordinating the acute-phase response to trauma, injury, and infection in vivo. Although IL-6 is synthesized predominantly by macrophages and lymphocytes, skeletal muscle is a newly recognized source of this cytokine. IL-6 from muscle spills into the circulation, and blood-borne IL-6 can be elevated >100-fold due to exercise and...

متن کامل

AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5.

There is a global epidemic of obesity, and obesity is known to inhibit AMP-activated protein kinase (AMPK) activity and impairs myogenesis. Myogenin mediates the fusion of myoblasts into myotubes, a critical step in myogenesis. We observed that inhibition of AMPKα1 downregulates myogenin expression and myogenesis, but the underlying mechanisms are unclear. We postulated that AMPK regulates myog...

متن کامل

SIRT1 regulates C2C12 myoblast cell proliferation by activating Wnt signaling pathway

Sirtuin type 1 (SIRT1) is a potent NAD+ dependent deacetylase that deacetylates histone and nonhistone proteins to regulate gene expression and protein activity. Emerging evidences have indicated that SIRT1 plays a significant role in diverse cellular processes including cell growth, differentiation, development, and physiological function in muscle cells; however the signaling mechanisms invol...

متن کامل

N-cadherin–dependent cell–cell contact regulates Rho GTPases and β-catenin localization in mouse C2C12 myoblasts

N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in skeletal muscle cell differentiation. We show that inhibition of N-cadherin-dependent adhesion impairs the upregulation of the two cyclin-dependent kinase inhibitors p21 and p27, the expression of the muscle-specific genes myogenin and troponin T, and C2C12 myoblast fusion. To determine t...

متن کامل

Sumoylation of histone deacetylase 1 regulates MyoD signaling during myogenesis

Sumoylation, the conjugation of a small ubiquitin-like modifier (SUMO) protein to a target, has diverse cellular effects. However, the functional roles of the SUMO modification during myogenesis have not been fully elucidated. Here, we report that basal sumoylation of histone deacetylase 1 (HDAC1) enhances the deacetylation of MyoD in undifferentiated myoblasts, whereas further sumoylation of H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 286 5  شماره 

صفحات  -

تاریخ انتشار 2004